Please use this identifier to cite or link to this item: https://doi.org/10.1002/rsa.20053
DC FieldValue
dc.titleMaxima in hypercubes
dc.contributor.authorBai, Z.-D.
dc.contributor.authorDevroye, L.
dc.contributor.authorHwang, H.-K.
dc.contributor.authorTsai, T.-H.
dc.date.accessioned2014-10-28T05:13:02Z
dc.date.available2014-10-28T05:13:02Z
dc.date.issued2005-10
dc.identifier.citationBai, Z.-D., Devroye, L., Hwang, H.-K., Tsai, T.-H. (2005-10). Maxima in hypercubes. Random Structures and Algorithms 27 (3) : 290-309. ScholarBank@NUS Repository. https://doi.org/10.1002/rsa.20053
dc.identifier.issn10429832
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105212
dc.description.abstractWe derive a Berry-Esseen bound, essentially of the order of the square of the standard deviation, for the number of maxima in random samples from (0, 1)d. The bound is, although not optimal, the first of its kind for the number of maxima in dimensions higher than two. The proof uses Poisson processes and Stein's method. We also propose a new method for computing the variance and derive an asymptotic expansion. The methods of proof we propose are of some generality and applicable to other regions such as d-dimensional simplex. © 2005 Wiley Periodicals, Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/rsa.20053
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1002/rsa.20053
dc.description.sourcetitleRandom Structures and Algorithms
dc.description.volume27
dc.description.issue3
dc.description.page290-309
dc.identifier.isiut000231966300002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.