Please use this identifier to cite or link to this item:
https://doi.org/10.3150/10-BEJ250
DC Field | Value | |
---|---|---|
dc.title | Functional CLT for sample covariance matrices | |
dc.contributor.author | Bai, Z. | |
dc.contributor.author | Wang, X. | |
dc.contributor.author | Zhou, W. | |
dc.date.accessioned | 2014-10-28T05:12:16Z | |
dc.date.available | 2014-10-28T05:12:16Z | |
dc.date.issued | 2010-11 | |
dc.identifier.citation | Bai, Z., Wang, X., Zhou, W. (2010-11). Functional CLT for sample covariance matrices. Bernoulli 16 (4) : 1086-1113. ScholarBank@NUS Repository. https://doi.org/10.3150/10-BEJ250 | |
dc.identifier.issn | 13507265 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/105154 | |
dc.description.abstract | Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics of sample covariance matrices, indexed by a set of functions with continuous fourth order derivatives on an open interval including [(1 - √ y)2, (1 + √ y)2], the support of the Marčenko-Pastur law. We also derive the explicit expressions for asymptotic mean and covariance functions. © 2010 ISI/BS. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.3150/10-BEJ250 | |
dc.source | Scopus | |
dc.subject | Bernstein polynomial | |
dc.subject | Central limit theorem | |
dc.subject | Sample covariance matrices | |
dc.subject | Stieltjes transform | |
dc.type | Article | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.3150/10-BEJ250 | |
dc.description.sourcetitle | Bernoulli | |
dc.description.volume | 16 | |
dc.description.issue | 4 | |
dc.description.page | 1086-1113 | |
dc.identifier.isiut | 000285533700009 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.