Please use this identifier to cite or link to this item:
Title: Collusion set detection using a quasi hidden Markov model
Authors: Wu, Z. 
Wu, X.
Keywords: Collusion set
Fraud detection
Hidden Markov model
Quasi hidden Markov model.
Issue Date: 2013
Citation: Wu, Z.,Wu, X. (2013). Collusion set detection using a quasi hidden Markov model. Statistics and its Interface 6 (1) : 53-64. ScholarBank@NUS Repository.
Abstract: In stock market, a collusion set is defined as a group of individuals or organizations who act cooperatively with an intention of manipulating security price. Collusion-based malpractices impose large costs on the economy, but few techniques have yet been developed for collusion set detection. In this article, we propose a quasi hidden Markov model (QHMM) approach. In particular, we consider the transactions as a marked point process with hidden states, and we calculate the class conditional probabilities to identify the malicious transactions. The detection algorithms associated with the model are recursive, hence suitable for online monitoring and detection. The QHMM approach has several advantages over the existent methods. For example, it incorporates the transaction times into the model naturally, and the model parameters can be estimated from the data systematically. We illustrate the models with examples and the QHMM performs well in our numerical experiments.
Source Title: Statistics and its Interface
ISSN: 19387989
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Oct 6, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.