Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.spl.2011.09.003
DC Field | Value | |
---|---|---|
dc.title | An empirical likelihood approach to quantile regression with auxiliary information | |
dc.contributor.author | Tang, C.Y. | |
dc.contributor.author | Leng, C. | |
dc.date.accessioned | 2014-10-28T05:09:59Z | |
dc.date.available | 2014-10-28T05:09:59Z | |
dc.date.issued | 2012-01 | |
dc.identifier.citation | Tang, C.Y., Leng, C. (2012-01). An empirical likelihood approach to quantile regression with auxiliary information. Statistics and Probability Letters 82 (1) : 29-36. ScholarBank@NUS Repository. https://doi.org/10.1016/j.spl.2011.09.003 | |
dc.identifier.issn | 01677152 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104995 | |
dc.description.abstract | We consider how to incorporate auxiliary information to improve quantile regression via empirical likelihood. We propose a novel framework and show that our approach yields more efficient estimates compared to those from the conventional quantile regression. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies. © 2011 Elsevier B.V. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.spl.2011.09.003 | |
dc.source | Scopus | |
dc.subject | Auxiliary information | |
dc.subject | Empirical likelihood | |
dc.subject | Estimating equations | |
dc.subject | Quantile regression | |
dc.type | Article | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1016/j.spl.2011.09.003 | |
dc.description.sourcetitle | Statistics and Probability Letters | |
dc.description.volume | 82 | |
dc.description.issue | 1 | |
dc.description.page | 29-36 | |
dc.description.coden | SPLTD | |
dc.identifier.isiut | 000298204800005 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
15
checked on Aug 18, 2022
WEB OF SCIENCETM
Citations
14
checked on Aug 10, 2022
Page view(s)
124
checked on Aug 18, 2022
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.