Please use this identifier to cite or link to this item: https://doi.org/10.1214/10-AAP758
DC FieldValue
dc.titleA Sequential Monte Carlo approach to computing tail probabilities in stochastic models
dc.contributor.authorChan, H.P.
dc.contributor.authorLai, T.L.
dc.date.accessioned2014-10-28T05:09:33Z
dc.date.available2014-10-28T05:09:33Z
dc.date.issued2011-12
dc.identifier.citationChan, H.P., Lai, T.L. (2011-12). A Sequential Monte Carlo approach to computing tail probabilities in stochastic models. Annals of Applied Probability 21 (6) : 2315-2342. ScholarBank@NUS Repository. https://doi.org/10.1214/10-AAP758
dc.identifier.issn10505164
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104969
dc.description.abstractSequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities for multidimensional Markov random walks. © Institute of Mathematical Statistics, 2011.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1214/10-AAP758
dc.sourceScopus
dc.subjectExceedance probabilities
dc.subjectLarge deviations
dc.subjectLogarithmic efficiency
dc.subjectSequential importance sampling and resampling
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1214/10-AAP758
dc.description.sourcetitleAnnals of Applied Probability
dc.description.volume21
dc.description.issue6
dc.description.page2315-2342
dc.identifier.isiut000298249900009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.