Please use this identifier to cite or link to this item: https://doi.org/10.1198/jasa.2011.tm10592
DC FieldValue
dc.titleA semiparametric threshold model for censored longitudinal data analysis
dc.contributor.authorLi, J.
dc.contributor.authorZhang, W.
dc.date.accessioned2014-10-28T05:09:33Z
dc.date.available2014-10-28T05:09:33Z
dc.date.issued2011-06
dc.identifier.citationLi, J., Zhang, W. (2011-06). A semiparametric threshold model for censored longitudinal data analysis. Journal of the American Statistical Association 106 (494) : 685-696. ScholarBank@NUS Repository. https://doi.org/10.1198/jasa.2011.tm10592
dc.identifier.issn01621459
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104968
dc.description.abstractMotivated by an investigation of the relationship between blood pressure change and progression of microalbuminuria (MA) among individuals with type I diabetes, we propose a new semiparametric threshold model for censored longitudinal data analysis.We also study a new semiparametric Bayes information criterion-type criterion for identifying the parametric component of the proposed model. Cluster effects in the model are implemented as unknown fixed effects. Asymptotic properties are established for the proposed estimators. A quadratic approximation used to implement the estimation procedure makes the method very easy to implement by avoiding the computation of multiple integrals and the need for iterative algorithms. Simulation studies show that the proposed methods work well in practice. An illustration using the Wisconsin Diabetes Registry dataset suggests some interesting findings. © 2011 American Statistical Association.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1198/jasa.2011.tm10592
dc.sourceScopus
dc.subjectABIC
dc.subjectCensored longitudinal data
dc.subjectKernel smoothing
dc.subjectLocal maximum likelihood estimation
dc.subjectQuadratic approximation
dc.subjectSemiparametric model
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1198/jasa.2011.tm10592
dc.description.sourcetitleJournal of the American Statistical Association
dc.description.volume106
dc.description.issue494
dc.description.page685-696
dc.identifier.isiut000293113300027
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.