Please use this identifier to cite or link to this item:
Title: Indecomposable Sylow 2-subgroups of simple groups
Authors: Harada, K.
Lang, M.L. 
Keywords: Simple groups
Sylow 2-subgroups
Issue Date: Jan-2005
Citation: Harada, K., Lang, M.L. (2005-01). Indecomposable Sylow 2-subgroups of simple groups. Acta Applicandae Mathematicae 85 (1-3) : 161-194. ScholarBank@NUS Repository.
Abstract: Let S be a Sylow 2-subgroup of a finite simple group and let S = S 1 × S2 × Sk be the direct product and each component Si-, i = 1, 2,..., k is indecomposable. In this article, we prove that each Si is also a Sylow 2-subgroup of some simple group. © springer 2005.
Source Title: Acta Applicandae Mathematicae
ISSN: 01678019
DOI: 10.1007/s10440-004-5618-0
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.