Please use this identifier to cite or link to this item: https://doi.org/10.1006/jfan.2001.3786
DC FieldValue
dc.titleTensor product of degenerate principal series and local theta correspondence
dc.contributor.authorLi, J.-S.
dc.contributor.authorTan, E.-C.
dc.contributor.authorZhu, C.-B.
dc.date.accessioned2014-10-28T02:46:57Z
dc.date.available2014-10-28T02:46:57Z
dc.date.issued2001-11-10
dc.identifier.citationLi, J.-S., Tan, E.-C., Zhu, C.-B. (2001-11-10). Tensor product of degenerate principal series and local theta correspondence. Journal of Functional Analysis 186 (2) : 381-431. ScholarBank@NUS Repository. https://doi.org/10.1006/jfan.2001.3786
dc.identifier.issn00221236
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104245
dc.description.abstractWe construct an intertwining map from the oscillator representation to the tensor product of two degenerate principal series of G and G1 which form a reductive dual pair in the sense of Howe. We derive results on local theta correspondence for the dual pairs (O(p, q), Sp(2q, ℝ)). (U(p, q), U(q, q)) and (Sp(p, q), O*(4q)). where p ≥ q. We also describe the correspondence completely for the pairs (O(p, q), SL(2, ℝ)), (U(p, q) U(1,1)), and (Sp(p, q), O*(4)). © 2001 Academic Press.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/jfan.2001.3786
dc.sourceScopus
dc.subjectComplementary series
dc.subjectDegenerate principal series
dc.subjectLocal theta correspondence
dc.subjectReductive dual pair
dc.subjectZeta integral
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1006/jfan.2001.3786
dc.description.sourcetitleJournal of Functional Analysis
dc.description.volume186
dc.description.issue2
dc.description.page381-431
dc.description.codenJFUAA
dc.identifier.isiut000172408700006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.