Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jfa.2011.04.005
DC FieldValue
dc.titleQ-curvature flow on the standard sphere of even dimension
dc.contributor.authorChen, X.
dc.contributor.authorXu, X.
dc.date.accessioned2014-10-28T02:43:59Z
dc.date.available2014-10-28T02:43:59Z
dc.date.issued2011-08-15
dc.identifier.citationChen, X., Xu, X. (2011-08-15). Q-curvature flow on the standard sphere of even dimension. Journal of Functional Analysis 261 (4) : 934-980. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jfa.2011.04.005
dc.identifier.issn00221236
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103992
dc.description.abstractUsing a gradient flow approach initiated by S. Brendle, we generalize the existence theorem for the prescribing Q-curvature equation on S2 (Gauss curvature) by M. Struwe (2005) [14] and on S4 by Malchiodi and Struwe (2006) [12] to Sn for all even n with the similar assumption on the prescribed curvature candidate f. © 2011 Elsevier Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jfa.2011.04.005
dc.sourceScopus
dc.subjectMorse theory
dc.subjectPrescribing Q-curvature
dc.subjectQ-curvature flow
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.jfa.2011.04.005
dc.description.sourcetitleJournal of Functional Analysis
dc.description.volume261
dc.description.issue4
dc.description.page934-980
dc.description.codenJFUAA
dc.identifier.isiut000291141900004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Aug 21, 2019

WEB OF SCIENCETM
Citations

5
checked on Aug 21, 2019

Page view(s)

68
checked on Aug 17, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.