Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00526-007-0130-9
DC FieldValue
dc.titlePrescribed Q-curvature problem on closed 4-Riemannian manifolds in the null case
dc.contributor.authorGe, Y.
dc.contributor.authorXu, X.
dc.date.accessioned2014-10-28T02:43:38Z
dc.date.available2014-10-28T02:43:38Z
dc.date.issued2008-04
dc.identifier.citationGe, Y., Xu, X. (2008-04). Prescribed Q-curvature problem on closed 4-Riemannian manifolds in the null case. Calculus of Variations and Partial Differential Equations 31 (4) : 549-555. ScholarBank@NUS Repository. https://doi.org/10.1007/s00526-007-0130-9
dc.identifier.issn09442669
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103966
dc.description.abstractThe main objective of this short note is to give a sufficient condition for a non constant function k to be Q curvature candidate for a conformal metric on a closed Riemannian manifold with the null Q-curvature. In contrast to the prescribed scalar curvature on the two-dimensional flat tori, the condition we provided is not necessary as some examples show. © 2007 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00526-007-0130-9
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00526-007-0130-9
dc.description.sourcetitleCalculus of Variations and Partial Differential Equations
dc.description.volume31
dc.description.issue4
dc.description.page549-555
dc.identifier.isiut000252872500009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

1
checked on Jan 19, 2022

WEB OF SCIENCETM
Citations

1
checked on Jan 19, 2022

Page view(s)

178
checked on Jan 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.