Please use this identifier to cite or link to this item:
Title: On the numerical computation of a structural decomposition in systems and control
Authors: Chu, D. 
Liu, X.
Tan, R.C.E. 
Keywords: Linear system
Numerical method
Special coordinate basis
Structural decomposition
Issue Date: Nov-2002
Citation: Chu, D., Liu, X., Tan, R.C.E. (2002-11). On the numerical computation of a structural decomposition in systems and control. IEEE Transactions on Automatic Control 47 (11) : 1786-1799. ScholarBank@NUS Repository.
Abstract: In this paper, we develop a new numerical method for a special coordinate basis of a linear time invariant system. Such a special coordinate basis is essentially a structural decomposition which explicitly displays the finite and infinite zero structures, as well as the invertibility structures of the given system. The technique is playing important roles in numerous topics in system and control theory, such as robust control, H∞ and H2 optimal control, almost disturbance decoupling, and zero placement of linear systems, just to name a few. Our method consists of three steps: reduction by orthogonal transformations, reduction by generalized Sylvester equations, and extraction of infinite zero structure. The performance of our method is illustrated by some numerical examples.
Source Title: IEEE Transactions on Automatic Control
ISSN: 00189286
DOI: 10.1109/TAC.2002.804484
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 13, 2020


checked on Aug 13, 2020

Page view(s)

checked on Aug 1, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.