Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/103803
DC Field | Value | |
---|---|---|
dc.title | On the grading numbers of direct products of chains | |
dc.contributor.author | Chen, C.C. | |
dc.contributor.author | Koh, K.M. | |
dc.contributor.author | Lee, S.C. | |
dc.date.accessioned | 2014-10-28T02:41:40Z | |
dc.date.available | 2014-10-28T02:41:40Z | |
dc.date.issued | 1984-03 | |
dc.identifier.citation | Chen, C.C.,Koh, K.M.,Lee, S.C. (1984-03). On the grading numbers of direct products of chains. Discrete Mathematics 49 (1) : 21-26. ScholarBank@NUS Repository. | |
dc.identifier.issn | 0012365X | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103803 | |
dc.description.abstract | For a finite lattice L, denote by l*(L) and l*(L) respectively the upper length and lower length of L. The grading number g(L) of L is defined as g(L) = l*(Sub(L))-l*(Sub(L)) where Sub(L) is the sublattice-lattice of L. We show that if K is a proper homomorphic image of a distributive lattice L, then l*(Sub(K)) < l*(Sub(L)); and derive from this result, formulae for l*(Sub(L)) and g(L) where L is a product of chains. © 1984. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.sourcetitle | Discrete Mathematics | |
dc.description.volume | 49 | |
dc.description.issue | 1 | |
dc.description.page | 21-26 | |
dc.description.coden | DSMHA | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.