Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.jmaa.2012.07.042
DC Field | Value | |
---|---|---|
dc.title | On the divergence theorem on manifolds | |
dc.contributor.author | Boonpogkrong, V. | |
dc.contributor.author | Chew, T.S. | |
dc.contributor.author | Lee, P.Y. | |
dc.date.accessioned | 2014-10-28T02:41:29Z | |
dc.date.available | 2014-10-28T02:41:29Z | |
dc.date.issued | 2013-01-01 | |
dc.identifier.citation | Boonpogkrong, V., Chew, T.S., Lee, P.Y. (2013-01-01). On the divergence theorem on manifolds. Journal of Mathematical Analysis and Applications 397 (1) : 182-190. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmaa.2012.07.042 | |
dc.identifier.issn | 0022247X | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103792 | |
dc.description.abstract | In this paper, the divergence theorem is proved by the Kurzweil-Henstock approach. The physical definition of the divergence of a vector field is used, instead of the usual definition used in mathematics papers. Sufficient conditions for the existence of the divergence of a vector field on n-dimensional manifolds in Rn are given. Concepts of strong differentiability are used in the sufficient conditions. © 2012 Elsevier Ltd. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jmaa.2012.07.042 | |
dc.source | Scopus | |
dc.subject | Manifolds | |
dc.subject | Partition of unity | |
dc.subject | The divergence theorem | |
dc.subject | The H-K integral | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1016/j.jmaa.2012.07.042 | |
dc.description.sourcetitle | Journal of Mathematical Analysis and Applications | |
dc.description.volume | 397 | |
dc.description.issue | 1 | |
dc.description.page | 182-190 | |
dc.identifier.isiut | 000309381100015 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.