Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jmaa.2012.07.042
DC FieldValue
dc.titleOn the divergence theorem on manifolds
dc.contributor.authorBoonpogkrong, V.
dc.contributor.authorChew, T.S.
dc.contributor.authorLee, P.Y.
dc.date.accessioned2014-10-28T02:41:29Z
dc.date.available2014-10-28T02:41:29Z
dc.date.issued2013-01-01
dc.identifier.citationBoonpogkrong, V., Chew, T.S., Lee, P.Y. (2013-01-01). On the divergence theorem on manifolds. Journal of Mathematical Analysis and Applications 397 (1) : 182-190. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmaa.2012.07.042
dc.identifier.issn0022247X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103792
dc.description.abstractIn this paper, the divergence theorem is proved by the Kurzweil-Henstock approach. The physical definition of the divergence of a vector field is used, instead of the usual definition used in mathematics papers. Sufficient conditions for the existence of the divergence of a vector field on n-dimensional manifolds in Rn are given. Concepts of strong differentiability are used in the sufficient conditions. © 2012 Elsevier Ltd.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jmaa.2012.07.042
dc.sourceScopus
dc.subjectManifolds
dc.subjectPartition of unity
dc.subjectThe divergence theorem
dc.subjectThe H-K integral
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.jmaa.2012.07.042
dc.description.sourcetitleJournal of Mathematical Analysis and Applications
dc.description.volume397
dc.description.issue1
dc.description.page182-190
dc.identifier.isiut000309381100015
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.