Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10623-005-1431-7
DC FieldValue
dc.titleOn the algebraic structure of quasi-cyclic codes IV: Repeated roots
dc.contributor.authorLing, S.
dc.contributor.authorNiederreiter, H.
dc.contributor.authorSolé, P.
dc.date.accessioned2014-10-28T02:41:15Z
dc.date.available2014-10-28T02:41:15Z
dc.date.issued2006-03
dc.identifier.citationLing, S., Niederreiter, H., Solé, P. (2006-03). On the algebraic structure of quasi-cyclic codes IV: Repeated roots. Designs, Codes, and Cryptography 38 (3) : 337-361. ScholarBank@NUS Repository. https://doi.org/10.1007/s10623-005-1431-7
dc.identifier.issn09251022
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103769
dc.description.abstractA trace formula for quasi-cyclic codes over rings of characteristic not coprime with the co-index is derived. The main working tool is the Generalized Discrete Fourier Transform (GDFT), which in turn relies on the Hasse derivative of polynomials. A characterization of Type II self-dual quasi-cyclic codes of singly even co-index over finite fields of even characteristic follows. Implications for generator theory are shown. Explicit expressions for the combinatorial duocubic, duoquintic and duoseptic constructions in characteristic two over finite fields are given. © 2006 Springer Science+Business Media, Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s10623-005-1431-7
dc.sourceScopus
dc.subjectCodes over rings
dc.subjectGDFT
dc.subjectHasse derivative
dc.subjectQuasi-cyclic codes
dc.subjectSelf-dual codes
dc.subjectType II codes
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s10623-005-1431-7
dc.description.sourcetitleDesigns, Codes, and Cryptography
dc.description.volume38
dc.description.issue3
dc.description.page337-361
dc.description.codenDCCRE
dc.identifier.isiut000234923500003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.