Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/103732
DC Field | Value | |
---|---|---|
dc.title | On optimal orientations of Cartesian products of even cycles | |
dc.contributor.author | Koh, K.M. | |
dc.contributor.author | Tay, E.G. | |
dc.date.accessioned | 2014-10-28T02:40:41Z | |
dc.date.available | 2014-10-28T02:40:41Z | |
dc.date.issued | 1998-12 | |
dc.identifier.citation | Koh, K.M.,Tay, E.G. (1998-12). On optimal orientations of Cartesian products of even cycles. Networks 32 (4) : 299-306. ScholarBank@NUS Repository. | |
dc.identifier.issn | 00283045 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103732 | |
dc.description.abstract | For a graph G, let D(G) be the family of strong orientations of G. Define d⇀(G) = min {d(D) \ D ∈ D(G)} and ρ(G) = d⇀(G) - d(G), where d(D) [respectively, d(G)] denotes the diameter of the digraph D (respectively, graph G). Let G × H denote the Cartesian product of the graphs G and H, and Cp, the cycle of order p. In this paper, we show that ρ(C2m × C2n) = 0 and ρ(C2m × C2n × G1 × G2 × ⋯ × Gk) = 0, where {Gi | 1 ≤ i ≤ k} is any combination of paths and cycles. © 1998 John Wiley & Sons, Inc. Networks 32: 299-306, 1998. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.sourcetitle | Networks | |
dc.description.volume | 32 | |
dc.description.issue | 4 | |
dc.description.page | 299-306 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.