Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/103691
DC FieldValue
dc.titleOn commutative Noetherian rings which have the s.p.a.r. property
dc.contributor.authorMan, S.H.
dc.date.accessioned2014-10-28T02:40:16Z
dc.date.available2014-10-28T02:40:16Z
dc.date.issued1998
dc.identifier.citationMan, S.H. (1998). On commutative Noetherian rings which have the s.p.a.r. property. Archiv der Mathematik 70 (1) : 31-40. ScholarBank@NUS Repository.
dc.identifier.issn0003889X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103691
dc.description.abstractLet R be a commutative ring with 1 and M be an unitary R-module. Prime and semiprime submodules of M are defined as follows. An R-submodule P of M is called a prime submodule of M if (i) P ≠ M, and (ii) whenever rm ∈ P for some r ∈ R, m ∈ M\P, then rM ⊆ P. An R-submodule N of M is called a semiprime submodule of M if (i) N ≠ M, and (ii) whenever rk m ∈ N for some r ∈ R, m ∈ M and natural number k, then rm ∈ N. It is clear that an intersection of prime submodules of M is a semiprime submodule of M. In this paper, we give a characterization of a commutative Noetherian ring R with property that, every semiprime submodule of an R-module is an intersection of prime submodules.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleArchiv der Mathematik
dc.description.volume70
dc.description.issue1
dc.description.page31-40
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.