Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0898-1221(99)00112-1
DC FieldValue
dc.titleMultiple solutions for higher-order difference equations
dc.contributor.authorAgarwal, R.P.
dc.contributor.authorO'Regan, D.
dc.date.accessioned2014-10-28T02:38:58Z
dc.date.available2014-10-28T02:38:58Z
dc.date.issued1999-05
dc.identifier.citationAgarwal, R.P., O'Regan, D. (1999-05). Multiple solutions for higher-order difference equations. Computers and Mathematics with Applications 37 (9) : 39-48. ScholarBank@NUS Repository. https://doi.org/10.1016/S0898-1221(99)00112-1
dc.identifier.issn08981221
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103582
dc.description.abstractThe nth (n≥2) order discrete conjugate problem (-1)n-pΔny(k) = f(k,y(k)), k∈I0, Δiy(0) = 0, 0≤i≤p-1 (here 1≤p≤n-1), Δi(T+n-i) = 0, 0≤i≤n-p-1, and the nth (n≥2) order discrete (n,p) problem Δny(k)+f(k,y(k)) = 0, k∈I0, Δiy(0) = 0, 0≤i≤n-2, Δpy(T+n-p) = 0, 0≤p≤n-1 is fixed, are discussed. Let T∈{1,2, ... }, I0 = {0,1, ..., T}, and y:In = {0,1, ..., T+n}→R. Let C(In) denote the class of maps w continuous on In (discrete topology) with norm |m|0 = maxi∈I(n) |w(i)|.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0898-1221(99)00112-1
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/S0898-1221(99)00112-1
dc.description.sourcetitleComputers and Mathematics with Applications
dc.description.volume37
dc.description.issue9
dc.description.page39-48
dc.description.codenCMAPD
dc.identifier.isiut000080013200006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

18
checked on May 14, 2021

WEB OF SCIENCETM
Citations

15
checked on May 14, 2021

Page view(s)

56
checked on May 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.