Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/103574
DC FieldValue
dc.titleMultidimensional interpolatory subdivision schemes
dc.contributor.authorRiemenschneider, S.D.
dc.contributor.authorShen, Z.
dc.date.accessioned2014-10-28T02:38:54Z
dc.date.available2014-10-28T02:38:54Z
dc.date.issued1997
dc.identifier.citationRiemenschneider, S.D.,Shen, Z. (1997). Multidimensional interpolatory subdivision schemes. SIAM Journal on Numerical Analysis 34 (6) : 2357-2381. ScholarBank@NUS Repository.
dc.identifier.issn00361429
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103574
dc.description.abstractThis paper presents a general construction of multidimensional interpolatory subdivision schemes. In particular, we provide a concrete method for the construction of bivariate interpolatory subdivision schemes of increasing smoothness by finding an appropriate mask to convolve with the mask of a three-direction box spline Br,r,r of equal multiplicities. The resulting mask for the interpolatory subdivision exhibits all the symmetries of the three-direction box spline and with this increased symmetry comes increased smoothness. Several examples are computed (for r = 2, . . . , 8). Regularity criteria in terms of the refinement mask are establíshed and applied to the examples to estimate their smoothness.
dc.sourceScopus
dc.subjectBox splines
dc.subjectInterpolation
dc.subjectInterpolatory subdivision schemes
dc.subjectSubdivision schemes
dc.subjectWavelets
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleSIAM Journal on Numerical Analysis
dc.description.volume34
dc.description.issue6
dc.description.page2357-2381
dc.description.codenSJNAA
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.