Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jat.2008.01.001
DC FieldValue
dc.titleConstructing tight frames of multivariate functions
dc.contributor.authorGoh, S.S.
dc.contributor.authorGoodman, T.N.T.
dc.contributor.authorLee, S.L.
dc.date.accessioned2014-10-28T02:32:44Z
dc.date.available2014-10-28T02:32:44Z
dc.date.issued2009-05
dc.identifier.citationGoh, S.S., Goodman, T.N.T., Lee, S.L. (2009-05). Constructing tight frames of multivariate functions. Journal of Approximation Theory 158 (1) : 49-68. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jat.2008.01.001
dc.identifier.issn00219045
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103047
dc.description.abstractThe paper presents a method of construction of tight frames for L2 (Ω), Ω ⊂ Rn. The construction is based on local orthogonal matrix extension of vectors associated with the transition matrices across consecutive resolution levels. Two explicit constructions are given, one for linear splines on triangular polygonal surfaces with arbitrary topology and the other for quadratic splines associated with Powell-Sabin elements on a six-direction mesh. © 2008 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jat.2008.01.001
dc.sourceScopus
dc.subjectPowell-Sabin elements
dc.subjectTight frames
dc.subjectTriangular polygonal surfaces
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.jat.2008.01.001
dc.description.sourcetitleJournal of Approximation Theory
dc.description.volume158
dc.description.issue1
dc.description.page49-68
dc.description.codenJAXTA
dc.identifier.isiut000266020300003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Aug 17, 2019

WEB OF SCIENCETM
Citations

2
checked on Aug 9, 2019

Page view(s)

54
checked on Aug 17, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.