Please use this identifier to cite or link to this item:
Title: Complementarity demand functions and pricing models for multi-product markets
Authors: Soon, W.
Zhao, G. 
Zhang, J.
Issue Date: Oct-2009
Citation: Soon, W., Zhao, G., Zhang, J. (2009-10). Complementarity demand functions and pricing models for multi-product markets. European Journal of Applied Mathematics 20 (5) : 399-430. ScholarBank@NUS Repository.
Abstract: In contrast to single-product pricing models, multi-product pricing models have been much less studied because of the complexity of multi-product demand functions. It is highly non-trivial to construct a multi-product demand function on the entire set of non-negative prices, not to mention approximating the real market demands to a desirable accuracy. Thus, many decision makers use incomplete demand functions which are defined only on a restricted domain, e.g. the set where all components of demand functions are non-negative. In the first part of this paper, we demonstrate the necessity of defining demand functions on the entire set of non-negative prices through some examples. Indeed, these examples show that incomplete demand functions may lead to inferior pricing models. Then we formulate a type of demand functions using a Nonlinear Complementarity Problem (NCP). We call it a Complementarity-Constrained Demand Function (CCDF). We will show that such demand functions possess certain desirable properties, such as monotonicity. In the second part of the paper, we consider an oligopolistic market, where producers/sellers are playing a non-cooperative game to determine the prices of their products. When a CCDF is incorporated into the best response problem of each producer/seller involved, it leads to a complementarity constrained pricing problem facing each producer/seller. Some basic properties of the pricing models are presented. In particular, we show that, under certain conditions, the complementarity constraints in this pricing model can be eliminated, which tremendously simplifies the computation and theoretical analysis. © 2009 Cambridge University Press.
Source Title: European Journal of Applied Mathematics
ISSN: 09567925
DOI: 10.1017/S0956792509007918
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Dec 3, 2020


checked on Nov 25, 2020

Page view(s)

checked on Nov 29, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.