Please use this identifier to cite or link to this item: https://doi.org/10.4007/annals.2009.170.783
DC FieldValue
dc.titleCombinatorial rigidity for unicritical polynomials
dc.contributor.authorAvila, A.
dc.contributor.authorKahn, J.
dc.contributor.authorLyubich, M.
dc.contributor.authorShen, W.
dc.date.accessioned2014-10-28T02:32:12Z
dc.date.available2014-10-28T02:32:12Z
dc.date.issued2009
dc.identifier.citationAvila, A., Kahn, J., Lyubich, M., Shen, W. (2009). Combinatorial rigidity for unicritical polynomials. Annals of Mathematics 170 (2) : 783-797. ScholarBank@NUS Repository. https://doi.org/10.4007/annals.2009.170.783
dc.identifier.issn0003486X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103001
dc.description.abstractWe prove that any unicritical polynomial fc : z → zd + C which is at most finitely renormalizable and has only repelling periodic points is combinatorially rigid. This implies that the connectedness locus (the "Multibrot set") is locally connected at the corresponding parameter values and generalizes Yoccoz's Theorem for quadratics to the higher degree case.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.4007/annals.2009.170.783
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.4007/annals.2009.170.783
dc.description.sourcetitleAnnals of Mathematics
dc.description.volume170
dc.description.issue2
dc.description.page783-797
dc.identifier.isiut000271956100008
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.