Please use this identifier to cite or link to this item:
https://doi.org/10.4007/annals.2009.170.783
Title: | Combinatorial rigidity for unicritical polynomials | Authors: | Avila, A. Kahn, J. Lyubich, M. Shen, W. |
Issue Date: | 2009 | Citation: | Avila, A., Kahn, J., Lyubich, M., Shen, W. (2009). Combinatorial rigidity for unicritical polynomials. Annals of Mathematics 170 (2) : 783-797. ScholarBank@NUS Repository. https://doi.org/10.4007/annals.2009.170.783 | Abstract: | We prove that any unicritical polynomial fc : z → zd + C which is at most finitely renormalizable and has only repelling periodic points is combinatorially rigid. This implies that the connectedness locus (the "Multibrot set") is locally connected at the corresponding parameter values and generalizes Yoccoz's Theorem for quadratics to the higher degree case. | Source Title: | Annals of Mathematics | URI: | http://scholarbank.nus.edu.sg/handle/10635/103001 | ISSN: | 0003486X | DOI: | 10.4007/annals.2009.170.783 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
27
checked on Sep 20, 2023
WEB OF SCIENCETM
Citations
22
checked on Sep 20, 2023
Page view(s)
240
checked on Sep 21, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.