Please use this identifier to cite or link to this item: https://doi.org/10.1093/qmath/har027
DC FieldValue
dc.titleAsymptotic behaviour of Lie powers and Lie modules
dc.contributor.authorBryant, R.M.
dc.contributor.authorLim, K.J.
dc.contributor.authorTan, K.M.
dc.date.accessioned2014-10-28T02:30:54Z
dc.date.available2014-10-28T02:30:54Z
dc.date.issued2012-12
dc.identifier.citationBryant, R.M., Lim, K.J., Tan, K.M. (2012-12). Asymptotic behaviour of Lie powers and Lie modules. Quarterly Journal of Mathematics 63 (4) : 845-853. ScholarBank@NUS Repository. https://doi.org/10.1093/qmath/har027
dc.identifier.issn00335606
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102892
dc.description.abstractLet V be a finite-dimensional FG-module, where F is a field of prime characteristic p and G is a group. We show that, when r is not a power of p, the Lie power L r(V) has a direct summand B r(V), which is a direct summand of the tensor power V ⊗r such that dim B r (V)/ dim L r (V) → 1 as r→∞. Similarly, for the same values of r, we obtain a projective submodule C(r) of the Lie module Lie (r) over F such that dim C(r)/dim Lie (r)→1 as r→∞. © 2011. Published by Oxford University Press. All rights reserved.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1093/qmath/har027
dc.description.sourcetitleQuarterly Journal of Mathematics
dc.description.volume63
dc.description.issue4
dc.description.page845-853
dc.identifier.isiut000311305700003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Jan 14, 2022

WEB OF SCIENCETM
Citations

2
checked on Jan 14, 2022

Page view(s)

73
checked on Jan 13, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.