Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.amc.2003.12.096
DC FieldValue
dc.titleA multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem
dc.contributor.authorAgarwal, R.P.
dc.contributor.authorO'Regan, D.
dc.date.accessioned2014-10-28T02:28:30Z
dc.date.available2014-10-28T02:28:30Z
dc.date.issued2005-02-15
dc.identifier.citationAgarwal, R.P., O'Regan, D. (2005-02-15). A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem. Applied Mathematics and Computation 161 (2) : 433-439. ScholarBank@NUS Repository. https://doi.org/10.1016/j.amc.2003.12.096
dc.identifier.issn00963003
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102684
dc.description.abstractUsing the Leggett Williams fixed point theorem we present in this paper criteria which guarantee the existence of three nonnegative solutions to second order impulsive equations. © 2004 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.amc.2003.12.096
dc.sourceScopus
dc.subjectImpulsive differential equations
dc.subjectLeggett Williams fixed point theorem
dc.subjectMultiple solutions
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.amc.2003.12.096
dc.description.sourcetitleApplied Mathematics and Computation
dc.description.volume161
dc.description.issue2
dc.description.page433-439
dc.description.codenAMHCB
dc.identifier.isiut000226559200009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

67
checked on Aug 11, 2022

WEB OF SCIENCETM
Citations

60
checked on Aug 11, 2022

Page view(s)

142
checked on Aug 18, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.