Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.disc.2007.04.063
DC Field | Value | |
---|---|---|
dc.title | A maximal zero-free interval for chromatic polynomials of bipartite planar graphs | |
dc.contributor.author | Dong, F.M. | |
dc.contributor.author | Koh, K.M. | |
dc.date.accessioned | 2014-10-28T02:28:25Z | |
dc.date.available | 2014-10-28T02:28:25Z | |
dc.date.issued | 2008-06-06 | |
dc.identifier.citation | Dong, F.M., Koh, K.M. (2008-06-06). A maximal zero-free interval for chromatic polynomials of bipartite planar graphs. Discrete Mathematics 308 (11) : 2285-2287. ScholarBank@NUS Repository. https://doi.org/10.1016/j.disc.2007.04.063 | |
dc.identifier.issn | 0012365X | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/102676 | |
dc.description.abstract | It is well known that (- ∞, 0) and (0, 1) are two maximal zero-free intervals for all chromatic polynomials. Jackson [A zero-free interval for chromatic polynomials of graphs, Combin. Probab. Comput. 2 (1993), 325-336] discovered that (1, frac(32, 27)] is another maximal zero-free interval for all chromatic polynomials. In this note, we show that (1, frac(32, 27)] is actually a maximal zero-free interval for the chromatic polynomials of bipartite planar graphs. © 2007 Elsevier B.V. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.disc.2007.04.063 | |
dc.source | Scopus | |
dc.subject | Bipartite graph | |
dc.subject | Chromatic polynomial | |
dc.subject | Planar graph | |
dc.subject | Zero | |
dc.subject | Zero-free interval | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1016/j.disc.2007.04.063 | |
dc.description.sourcetitle | Discrete Mathematics | |
dc.description.volume | 308 | |
dc.description.issue | 11 | |
dc.description.page | 2285-2287 | |
dc.description.coden | DSMHA | |
dc.identifier.isiut | 000254933100025 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.