Please use this identifier to cite or link to this item: https://doi.org/10.1137/050640102
DC FieldValue
dc.titleA least-squares finite element method for the magnetostatic problem in a multiply connected Lipschitz domain
dc.contributor.authorDuan, H.-Y.
dc.contributor.authorLin, P.
dc.contributor.authorSaikrishnan, P.
dc.contributor.authorTan, R.C.E.
dc.date.accessioned2014-10-28T02:28:20Z
dc.date.available2014-10-28T02:28:20Z
dc.date.issued2007
dc.identifier.citationDuan, H.-Y., Lin, P., Saikrishnan, P., Tan, R.C.E. (2007). A least-squares finite element method for the magnetostatic problem in a multiply connected Lipschitz domain. SIAM Journal on Numerical Analysis 45 (6) : 2537-2563. ScholarBank@NUS Repository. https://doi.org/10.1137/050640102
dc.identifier.issn00361429
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102668
dc.description.abstractA new least-squares finite element method is developed for the curl-div magnetostatic problem in Lipschitz and multiply connected domains filled with anisotropic nonhomogeneous materials. In order to deal with possibly low regularity of the solution, local L2 projectors are introduced to standard least-squares formulation and applied to both curl and div operators. Coercivity is established by adding suitable mesh-dependent bilinear terms. As a result, any continuous finite elements (lower-order elements are enriched with suitable bubbles) can be employed. A desirable error bound is obtained: ∥u - uh∥0 ≤ C ∥u - ũ∥0, where uh and ũ are the finite element approximation and the finite element interpolant of the exact solution u, respectively. Numerical tests confirm the theoretical results. © 2007 Society for Industrial and Applied Mathematics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/050640102
dc.sourceScopus
dc.subjectCurl-div magnetostatic problem
dc.subjectL2 projector
dc.subjectLeast-squares continuous finite element method
dc.typeArticle
dc.contributor.departmentDEAN'S OFFICE (SCIENCE)
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1137/050640102
dc.description.sourcetitleSIAM Journal on Numerical Analysis
dc.description.volume45
dc.description.issue6
dc.description.page2537-2563
dc.description.codenSJNAA
dc.identifier.isiut000253017000012
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Nov 25, 2020

WEB OF SCIENCETM
Citations

6
checked on Nov 25, 2020

Page view(s)

117
checked on Nov 29, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.