Publication

Water-Tunable Highly Sub-Wavelength Spiral Resonator for Magnetic Field Enhancement of MRI Coils at 1.5 T

Motovilova, E.
Sandeep, S.
Hashimoto, M.
Huang, S.Y.
Citations
Altmetric:
Alternative Title
Abstract
In magnetic resonance imaging (MRI), several studies have demonstrated that the metamaterial-based structures can effectively improve the sensitivity, and thus the signal-to-noise ratio (SNR), of receiving radio-frequency (RF) coils. However, the use of metamaterials for this type of the MRI application is often limited due to the bulkiness of the metamaterial structure at RF wavelengths and a lack of frequency tunability of the final design. In this work, we propose a planar compact sub-wavelength (?/50) spiral resonator to increase the sensitivity of a receive coil with frequency tunability for the 1.5 T MRI. Its double-layered spiral design with a cavity embedded in the substrate between the two spirals allows water deposition for frequency tuning. At the resonance frequency of 64 MHz, the spiral resonator shows a 24% improvement in terms of the B1- field at the depth of 30 mm into a load experimentally. Even at a penetration depth as much as 60 mm (deep brain in the case of head imaging), an enhancement of 9% was observed. Moreover, the magnetic field enhancement comes with a decrease (10%) in specific absorption rate (SAR). In terms of tuning, by controlling the water level in the cavity, the proposed spiral resonator shows a wide tuning range of 35 MHz, centered around 64 MHz, with high tunability sensitivity (2.4-0.75 MHz/ml or 15-4.8 MHz/mm), which is due to the fact that the tuning cavity is located between the two spirals, where the fields are highly confined. © 2013 IEEE.
Keywords
MRI, resonator, RF coil, RF lens, spiral
Source Title
IEEE Access
Publisher
Institute of Electrical and Electronics Engineers Inc.
Series/Report No.
Organizational Units
Organizational Unit
SURGERY
dept
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Date
2019
DOI
10.1109/ACCESS.2019.2927359
Type
Article
Additional Links
Related Datasets
Related Publications