Citations
Altmetric:
Alternative Title
Abstract
Cell lineage analysis is critical in understanding the relationship between progenitors and differentiated cells as well as the mechanism underlying the process of differentiation. In order to study the zebrafish endocrine pancreas cell lineage, transgenic expression of diphtheria toxin gene A chain (DTA) under two cell type-specific promoters derived from the insulin (ins) and somatostatin2 (sst2) genes was used to ablate the two types of endocrine cells: insulin-producing β-cells and somatostatin-producing δ-cells, respectively. We found that ablation of β-cells resulted in a reduction of not only β-cells but also glucagon-producing α-cells; in contrast, δ-cells were largely unaffected. Ablation of δ-cells led to reduction of all three types of endocrine cells: α-, β-, and δ. Interestingly, α-cells were more profoundly affected in both β- and δ-cell ablations and were frequently reduced together with β- and δ-cells. By taking advantage of Tg(ins:gfp) and Tg(sst2:gfp) lines, we also monitored the changes of different types of endocrine cells in vivo after ablation and found that both β- and δ-cell populations significantly recovered by 3 dpf after their ablation and it seemed that δ-cells had a better capability of recovery than β-cells. Thus, our current observations indicated differential interdependence of these three cell lineages. The development of zebrafish α-cells, but not δ-cells, is dependent on β-cells, while the development of both α- and β-cells is dependent on δ-cells. In contrast, the development of δ-cells was independent of β-cells. © 2009 International Society of Differentiation.
Keywords
Diphtheria toxin gene A chain, Glucagon, Insulin, Pancreas, Somatostatin, Zebrafish
Source Title
Differentiation
Publisher
Series/Report No.
Collections
Rights
Date
2009-11
DOI
10.1016/j.diff.2009.05.009
Type
Article