Organization name
INSTITUTE FOR MATHEMATICAL SCIENCES


Results 1-20 of 170 (Search time: 0.002 seconds).

Issue DateTitleAuthor(s)
115-Sep-1997Σ2 induction and infinite injury priority arguments, Part II Tame Σ2 coding and the jump operatorChong, C.T. ; Yang, Y. 
220-Jun-2012Π11-conservation of combinatorial principles weaker than Ramsey's theorem for pairsChong, C.T. ; Slaman, T.A.; Yang, Y. 
3Feb-2013X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpaintingDong, B.; Li, J.; Shen, Z. 
415-Aug-1997Weyl-Heisenberg Frames and Riesz bases in L2(ℝd)Ron, A.; Shen, Z. 
52006Wavelets with short supportHan, B.; Shen, Z. 
6Dec-2005Wavelets from the loop schemeHan, B.; Shen, Z. ; Cohen, A.
72009Wavelet leader multifractal analysis for texture classificationWendt, H.; Abry, P.; Jaffard, S.; Ji, H. ; Shen, Z. 
82010Wavelet frames and image restorationsShen, Z. 
910-Sep-2011Wavelet frame based surface reconstruction from unorganized pointsDong, B.; Shen, Z. 
1020-Mar-2010Wavelet frame based scene reconstruction from range dataJi, H. ; Shen, Z. ; Xu, Y. 
115-Dec-2013Wavelet frame based multiphase image segmentationTai, C.; Zhang, X.; Shen, Z. 
12Aug-2013Wavelet frame based color image demosaicingLiang, J.; Li, J.; Shen, Z. ; Zhang, X.
13Mar-2012Wavelet frame based blind image inpaintingDong, B.; Ji, H. ; Li, J.; Shen, Z. ; Xu, Y. 
141-Jun-2003Wavelet deblurring algorithms for spatially varying blur from high-resolution image reconstructionChan, R.H.; Chan, T.F.; Shen, L. ; Shen, Z. 
15May-2011Wavelet based restoration of images with missing or damaged pixelsJi, H. ; Shen, Z. ; Xu, Y. 
16Aug-2004Uncorrelatedness and orthogonality for vector-valued processesLoeb, P.A.; Osswald, H.; Sun, Y. ; Zhang, Z. 
172001Two classes of ternary codes and their weight distributionsDing, C. ; Kløve, T.; Sica, F.
18Sep-2010Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmesAlthaus, C.L.; Heijne, J.C.M.; Roellin, A. ; Low, N.
19May-2013Total variation error bounds for geometric approximationPeköz, E.A.; Röllin, A. ; Ross, N.
202015Tight wavelet frames in low dimensions with canonical filtersJiang, Q.; Shen, Z.