Browsing by Author Teo, K.L.

Showing results 1 to 17 of 17
Issue DateTitleAuthor(s)
Dec-1997A general approach to nonlinear multiple control problems with perturbation considerationLiu, Y.; Teo, K.L.; Agarwal, R.P. 
28-Jan-2002A note on the chromaticity of some 2-connected (n,n + 3)-graphsDong, P.M.; Teo, K.L.; Koh, K.M. 
1998An analysis of temperature dependent photoluminescence line shapes in InGaNTeo, K.L.; Colton, J.S.; Yu, P.Y.; Weber, E.R.; Li, M.F. ; Liu, W.; Uchida, K.; Tokunaga, H.; Akutsu, N.; Matsumoto, K.
28-Jul-2000An attempt to classify bipartite graphs by chromatic polynomialsDong, F.M.; Koh, K.M. ; Teo, K.L.; Little, C.H.C.; Hendy, M.D.
15-Mar-1994Chromatic classes of 2-connected (n, n + 3)-graphs with at least two trianglesKoh, K.M. ; Teo, K.L.
28-Sep-2000Chromatically unique bipartite graphs with low 3-independent partition numbersDong, F.M.; Koh, K.M. ; Teo, K.L.; Little, C.H.C.; Hendy, M.D.
23-Jan-2004Chromatically unique multibridge graphsDong, F.M.; Teo, K.L.; Little, C.H.C.; Hendy, M.; Koh, K.M. 
May-1994Computing eigenvalues of Sturm-Liouville problems via optimal control theoryGoh, C.J.; Teo, K.L.; Agarwal, R.P. 
Jun-1986Convergence of a feasible directions algorithm for a distributed optimal control problem of parabolic type with terminal inequality constraintsTeo, K.L.; Wilson, S.J. 
28-Feb-2002Non-chordal graphs having integral-root chromatic polynomials IIDong, P.M.; Teo, K.L.; Koh, K.M. ; Hendy, M.D.
Feb-1984On the sublattice-lattice of a latticeChen, C.C. ; Koh, K.M. ; Teo, K.L.
Oct-1986Optimal design of tapered beams for maximum buckling strengthWang, C.M. ; Thevendran, V. ; Teo, K.L.; Kitipornchai, S.
May-2001Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphsDong, F.M.; Koh, K.M. ; Teo, K.L.; Little, C.H.C.; Hendy, M.D.
2001Structures and chromaticity of extremal 3-colourable sparse graphsDong, F.M.; Koh, K.M. ; Teo, K.L.
Sep-1990The search for chromatically unique graphsKoh, K.M. ; Teo, K.L.
10-Aug-1997The search for chromatically unique graphs - IIKoh, K.M. ; Teo, K.L.