Browsing by Author TONG DIANMIN

Showing results 1 to 19 of 19
Issue DateTitleAuthor(s)
23-May-2005A note on the geometric phase in adiabatic approximationTong, D.M. ; Singh, K. ; Kwek, L.C. ; Fan, X.J.; Oh, C.H. 
21-Jan-2007Adiabatic approximation in open systems: An alternative approachYi, X.X.; Tong, D.M. ; Kwek, L.C.; Oh, C.H. 
2007Field-induced meniscus dynamics and its impact on the nanoscale tip-surface interfaceXie, X.N. ; Chung, H.J. ; Tong, D.M. ; Sow, C.H. ; Wee, A.T.S. 
Dec-2003General formalism of Hamiltonians for realizing a prescribed evolution of a qubitTong, D.M. ; Chen, J.-L. ; Kwek, L.C. ; Lai, C.H. ; Oh, C.H. 
31-Jan-2003Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic fieldTong, D.M. ; Kwek, L.C. ; Oh, C.H. 
Feb-2006Geometric phase for mixed statesKwek, L.C. ; Tong, D.M. ; Chen, J.L. ; Du, J.F. ; Choo, K.W.; Ravishankar, R. ; Kaszlikowski, D. ; Oh, C.H. 
Jun-2003Geometric phase for mixed statesTong, D.-M. ; Chen, J.-L. ; Du, J.-F.
2006Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limitYi, X.X. ; Tong, D.M. ; Wang, L.C.; Kwek, L.C.; Oh, C.H. 
20-Dec-2004Geometric phase of Dicke state of excitons in N coupled quantum dotsTong, D.M. ; Kwek, L.C. ; Couteau, C.; Oh, C.H. 
Mar-2003Geometric phases for nondegenerate and degenerate mixed statesSingh, K. ; Tong, D.M. ; Basu, K.; Chen, J.L. ; Du, J.F. 
1-Mar-2005Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed statesTong, D.M. ; Sjöqvist, E.; Filipp, S.; Kwek, L.C. ; Oh, C.H. 
20-Aug-2004Kinematic approach to the mixed state geometric phase in nonunitary evolutionTong, D.M. ; Sjöqvist, E.; Kwek, L.C. ; Oh, C.H. 
Nov-2006Kraus representation for the density operator of a qubitTong, D.M. ; Chen, J.L. ; Huang, J.Y.; Kwek, L.C. ; Oh, C.H. 
May-2004Operator-sum representation of time-dependent density operators and its applicationsTong, D.M. ; Kwek, L.C. ; Oh, C.H. ; Chen, J.-L. ; Ma, L. 
9-Sep-2005Quantitative conditions do not guarantee the validity of the adiabatic approximationTong, D.M. ; Singh, K. ; Kwek, L.C. ; Oh, C.H. 
26-Nov-2004Quantum nonlocality of Heisenberg XX model with site-dependent coupling strengthWu, C. ; Chen, J.-L. ; Tong, D.M. ; Kwek, L.C. ; Oh, C.H. 
Aug-2003Relation between geometric phases of entangled bipartite systems and their subsystemsTong, D.M. ; Sjöqvist, E.; Kwek, L.C. ; Oh, C.H. ; Ericsson, M.
9-Apr-2007Sufficiency criterion for the validity of the adiabatic approximationTong, D.M. ; Singh, K. ; Kwek, L.C. ; Oh, C.H. 
Aug-2007The hybrid quantum computerKwek, L.C. ; Lim, Y.L.; Wu, C. ; Chen, J.-L.; Liu, X. ; Feng, X. ; Tong, D.M. ; Choo, K.W.; Oh, C.H.