Please use this identifier to cite or link to this item:
Title: Unifying classical and quantum key distillation
Authors: Christandl, M.
Ekert, A. 
Horodecki, M.
Horodecki, P.
Oppenheim, J.
Renner, R.
Issue Date: 2007
Citation: Christandl, M.,Ekert, A.,Horodecki, M.,Horodecki, P.,Oppenheim, J.,Renner, R. (2007). Unifying classical and quantum key distillation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4392 LNCS : 456-478. ScholarBank@NUS Repository.
Abstract: Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state ρABE- In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate, i.e., the number of key bits that can be extracted per copy of ρABE- Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve's side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve's memory are important in order to determine the correct security threshold in QKD. © International Association for Cryptologic Research 2007.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN: 9783540709350
ISSN: 03029743
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Sep 28, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.