Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevE.77.031131
Title: Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model
Authors: Kosińska, I.D.
Goychuk, I.
Kostur, M.
Schmid, G.
Hänggi, P. 
Issue Date: 26-Mar-2008
Source: Kosińska, I.D., Goychuk, I., Kostur, M., Schmid, G., Hänggi, P. (2008-03-26). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 77 (3) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevE.77.031131
Abstract: Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biological ion channels. Here, the ion current rectification is studied within a reduced one-dimensional (1D) Poisson-Nernst-Planck (PNP) model of synthetic nanopores. A conical channel of a few nm to a few hundred nm in diameter, and of a few μm long is considered in the limit where the channel length considerably exceeds the Debye screening length. The rigid channel wall is assumed to be weakly charged. A one-dimensional reduction of the three-dimensional problem in terms of corresponding entropic effects is put forward. The ion transport is described by the nonequilibrium steady-state solution of the 1D Poisson-Nernst-Planck system within a singular perturbation treatment. An analytic formula for the approximate rectification current in the lowest order perturbation theory is derived. A detailed comparison between numerical results and the singular perturbation theory is presented. The crucial importance of the asymmetry in the potential jumps at the pore ends on the rectification effect is demonstrated. This so constructed 1D theory is shown to describe well the experimental data in the regime of small-to-moderate electric currents. © 2008 The American Physical Society.
Source Title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/97778
ISSN: 15393755
DOI: 10.1103/PhysRevE.77.031131
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

88
checked on Apr 23, 2018

WEB OF SCIENCETM
Citations

94
checked on Apr 23, 2018

Page view(s)

41
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.