Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.nimb.2007.02.047
Title: Rapid prototyping of micro/nano poly (methyl methacrylate) fluidic systems using proton beam writing
Authors: Shao, P.G. 
van Kan, J.A. 
Wang, L.P.
Ansari, K. 
Bettiol, A.A. 
Watt, F. 
Keywords: Fluidic chips
PMMA nano enclosed channels
Proton beam writing
Issue Date: Jul-2007
Citation: Shao, P.G., van Kan, J.A., Wang, L.P., Ansari, K., Bettiol, A.A., Watt, F. (2007-07). Rapid prototyping of micro/nano poly (methyl methacrylate) fluidic systems using proton beam writing. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 260 (1) : 362-365. ScholarBank@NUS Repository. https://doi.org/10.1016/j.nimb.2007.02.047
Abstract: A technique has been developed for the rapid prototyping of enclosed micro/nano polymethyl methacrylate (PMMA) fluidic systems using proton beam writing (PBW) and thermal bonding. Micro/nano structures consisting of channels and reservoirs were fabricated in a PMMA resist layer coated on to a Kapton substrate using a focused MeV proton beam. By thermal bonding these structures are fixed to a top bulk housing of PMMA, peeling off the Kapton substrate, and bonding the remaining exposed side to PMMA, enclosed high-aspect-ratio nano/microchannels can be fabricated. The key to the process is bonding the PMMA housing to the patterned resist under suitable conditions, to ensure that the bond strength is higher than the adhesion between the resist to the Kapton substrate, while ensuring that the deformation of the patterned structures caused by bonding temperature and pressure is minimised. Experiments showed that the optimum bonding condition is at 105 °C with a pressure of 1.2 Bar for 2 h. © 2007 Elsevier B.V. All rights reserved.
Source Title: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
URI: http://scholarbank.nus.edu.sg/handle/10635/97753
ISSN: 0168583X
DOI: 10.1016/j.nimb.2007.02.047
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Oct 17, 2018

WEB OF SCIENCETM
Citations

8
checked on Oct 9, 2018

Page view(s)

35
checked on Oct 5, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.