Please use this identifier to cite or link to this item: https://doi.org/10.1140/epjb/e2009-00187-2
DC FieldValue
dc.titleQuantum transport in honeycomb lattice ribbons with armchair and zigzag edges coupled to semi-infinite linear chain leads
dc.contributor.authorCuansing, E.
dc.contributor.authorWang, J.-S.
dc.date.accessioned2014-10-16T09:38:27Z
dc.date.available2014-10-16T09:38:27Z
dc.date.issued2009-06
dc.identifier.citationCuansing, E., Wang, J.-S. (2009-06). Quantum transport in honeycomb lattice ribbons with armchair and zigzag edges coupled to semi-infinite linear chain leads. European Physical Journal B 69 (4) : 505-513. ScholarBank@NUS Repository. https://doi.org/10.1140/epjb/e2009-00187-2
dc.identifier.issn14346028
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/97712
dc.description.abstractWe study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon's length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions. © 2009 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1140/epjb/e2009-00187-2
dc.description.sourcetitleEuropean Physical Journal B
dc.description.volume69
dc.description.issue4
dc.description.page505-513
dc.identifier.isiut000267488200006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.