Please use this identifier to cite or link to this item:
Title: PT symmetry as a generalization of Hermiticity
Authors: Wang, Q.-H. 
Chia, S.-Z.
Zhang, J.-H.
Issue Date: 2010
Citation: Wang, Q.-H., Chia, S.-Z., Zhang, J.-H. (2010). PT symmetry as a generalization of Hermiticity. Journal of Physics A: Mathematical and Theoretical 43 (29) : -. ScholarBank@NUS Repository.
Abstract: The Hilbert space in PT -symmetric quantum mechanics is formulated as a linear vector space with a dynamic inner product. The most general PT - symmetric matrix Hamiltonians are constructed for the 2 × 2 and 3 × 3 cases. In the former case, the PT -symmetric Hamiltonian represents the most general matrix Hamiltonian with a real spectrum. In both cases, Hermitian matrices are shown to be special cases of PT -symmetric matrices. This finding confirms and strengthens the early belief that the PT -symmetric quantum mechanics is a generalization of the conventional Hermitian quantum mechanics. © 2010 IOP Publishing Ltd.
Source Title: Journal of Physics A: Mathematical and Theoretical
ISSN: 17518113
DOI: 10.1088/1751-8113/43/29/295301
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on May 18, 2018

Page view(s)

checked on Mar 9, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.