Please use this identifier to cite or link to this item: https://doi.org/10.1021/nn302876w
Title: Photocontrolled molecular structural transition and doping in graphene
Authors: Peimyoo, N.
Li, J.
Shang, J.
Shen, X.
Qiu, C.
Xie, L.
Huang, W.
Yu, T. 
Keywords: azobenzene
doping
grapheme
molecular conformation change
photoeffect
photoswitching
Raman
Issue Date: 23-Oct-2012
Citation: Peimyoo, N., Li, J., Shang, J., Shen, X., Qiu, C., Xie, L., Huang, W., Yu, T. (2012-10-23). Photocontrolled molecular structural transition and doping in graphene. ACS Nano 6 (10) : 8878-8886. ScholarBank@NUS Repository. https://doi.org/10.1021/nn302876w
Abstract: We studied chemical doping of trans- and cis-azobenzene on graphene by Raman spectroscopy. It was found that the molecule induces hole-doping in graphene through charge transfer. Moreover, the doping level in graphene can be reversibly modulated by a photocontrolled molecular conformation change. As trans-azobenzene isomerizes to the cis configuration under UV irradiation, we probe the dynamic molecular structural evolution of azobenzene on graphene by Raman spectroscopy. Raman analysis indicates the precise orientation of cis-azobenzene on the graphene surface, which brings us further comprehension of the effect of conformation change on the electronic properties of graphene. In particular, the substantial decreases of the doping level and chemical enhancement of the molecular signal are attributed to the weakening of hole transfer from molecule to graphene, owing to the lifting of the electron-withdrawing group away from the graphene. Moreover, the calculation results exhibit the favorable configuration of cis-azobenzene, which is in good agreement with Raman spectroscopic analysis. Our results highlight an approach for employing graphene as a promising platform for probing molecular conformation transition at the submolecular level by Raman spectroscopy. © 2012 American Chemical Society.
Source Title: ACS Nano
URI: http://scholarbank.nus.edu.sg/handle/10635/97531
ISSN: 19360851
DOI: 10.1021/nn302876w
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

36
checked on Sep 21, 2018

WEB OF SCIENCETM
Citations

34
checked on Sep 11, 2018

Page view(s)

33
checked on Jun 29, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.