Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0167-2789(01)00223-8
Title: Fourier-Bessel analysis of patterns in a circular domain
Authors: Guan, S. 
Lai, C.-H. 
Wei, G.W. 
Keywords: Cahn-Hilliard equation
Circular domain
Fourier-Bessel analysis
Issue Date: 1-May-2001
Citation: Guan, S.,Lai, C.-H.,Wei, G.W. (2001-05-01). Fourier-Bessel analysis of patterns in a circular domain. Physica D: Nonlinear Phenomena 151 (2-4) : 83-98. ScholarBank@NUS Repository. https://doi.org/10.1016/S0167-2789(01)00223-8
Abstract: This paper explores the use of the Fourier-Bessel analysis for characterizing patterns in a circular domain. A set of stable patterns is found to be well-characterized by the Fourier-Bessel functions. Most patterns are dominated by a principal Fourier-Bessel mode [n, m] which has the largest Fourier-Bessel decomposition amplitude when the control parameter R is close to a corresponding non-trivial root (ρn,m) of the Bessel function. Moreover, when the control parameter is chosen to be close to two or more roots of the Bessel function, the corresponding principal Fourier-Bessel modes compete to dominate the morphology of the patterns. © 2001 Elsevier Science B.V.
Source Title: Physica D: Nonlinear Phenomena
URI: http://scholarbank.nus.edu.sg/handle/10635/96671
ISSN: 01672789
DOI: 10.1016/S0167-2789(01)00223-8
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

26
checked on Nov 7, 2018

WEB OF SCIENCETM
Citations

22
checked on Oct 22, 2017

Page view(s)

51
checked on Nov 9, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.