Please use this identifier to cite or link to this item: https://doi.org/10.1088/0031-8949/75/4/022
Title: Dynamical symmetry and geometric phase
Authors: Wang, Z.S. 
Kwek, L.C. 
Lai, C.H. 
Oh, C.H. 
Issue Date: 1-Apr-2007
Citation: Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H. (2007-04-01). Dynamical symmetry and geometric phase. Physica Scripta 75 (4) : 494-499. ScholarBank@NUS Repository. https://doi.org/10.1088/0031-8949/75/4/022
Abstract: By considering dynamical symmetry between canonically equivalent systems, we investigate the connection between the geometric phase and dynamical invariants, where the Liouville-von-Neumann equation is directly deduced. Furthermore, we show that an arbitrary shift of the Hamiltonian, where f i(t) is a real function and Xi is a generator of dynamical symmetry, leaves the geometric phase invariant. © 2007 The Royal Swedish Academy of Sciences.
Source Title: Physica Scripta
URI: http://scholarbank.nus.edu.sg/handle/10635/96276
ISSN: 00318949
DOI: 10.1088/0031-8949/75/4/022
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

13
checked on Sep 19, 2018

WEB OF SCIENCETM
Citations

12
checked on Sep 19, 2018

Page view(s)

46
checked on Sep 21, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.