Please use this identifier to cite or link to this item: https://doi.org/10.1039/c1ce05685a
Title: (N,F)-Co-doped TiO 2: Synthesis, anatase-rutile conversion and Li-cycling properties
Authors: Cherian, C.T.
Reddy, M.V. 
Magdaleno, T.
Sow, C.-H. 
Ramanujachary, K.V.
Rao, G.V.S.
Chowdari, B.V.R. 
Issue Date: 7-Feb-2012
Citation: Cherian, C.T., Reddy, M.V., Magdaleno, T., Sow, C.-H., Ramanujachary, K.V., Rao, G.V.S., Chowdari, B.V.R. (2012-02-07). (N,F)-Co-doped TiO 2: Synthesis, anatase-rutile conversion and Li-cycling properties. CrystEngComm 14 (3) : 978-986. ScholarBank@NUS Repository. https://doi.org/10.1039/c1ce05685a
Abstract: Nitrogen and fluorine co-doped Ti-oxide, TiO 1.9N 0.05F 0.15 (TiO 2(N,F)), with the anatase structure is prepared by the pyro-ammonolysis of TiF 3. For the first time it is shown that TiO 2(N,F) and anatase-TiO 2 are converted to nanosize-rutile structure by high energy ball milling (HEB). The polymorphs are characterised by X-ray diffraction, Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Raman spectra. The Li storage and cycling properties are examined by galvanostatic cycling and cyclic voltammetry in the voltage range 1-2.8 V vs. Li at 30 mA g -1. The performance of TiO 2(N,F) is much better than pure anatase-TiO 2 and showed a reversible capacity of 95 (±3) mA h g -1 stable up to 25 cycles with a coulombic efficiency of ∼98%. Nano-phase rutile TiO 2(N,F) showed an initial reversible capacity of 210 mA h g -1 which slowly degraded to 165 (±3) mA h g -1 after 50 cycles and stabilised between the 50 th and 60 th cycle whereas the nano-phase rutile-TiO 2 (prepared by HEB of anatase-TiO 2) exhibited a reversible capacity of 130 (±3) mA h g -1 which is stable in the range, 10-60 cycles. The crystal structure of anatase TiO 2(N,F) is not destroyed upon Li-cycling and is confirmed by ex situ XRD and HR-TEM. © 2012 The Royal Society of Chemistry.
Source Title: CrystEngComm
URI: http://scholarbank.nus.edu.sg/handle/10635/95589
ISSN: 14668033
DOI: 10.1039/c1ce05685a
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

39
checked on May 27, 2018

WEB OF SCIENCETM
Citations

39
checked on Apr 10, 2018

Page view(s)

82
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.