Please use this identifier to cite or link to this item: https://doi.org/10.1021/jp408890k
Title: Reversible switching of a single-dipole molecule imbedded in two-dimensional hydrogen-bonded binary molecular networks
Authors: Zhang, J.L.
Xu, J.L.
Niu, T.C.
Lu, Y.H.
Liu, L.
Chen, W. 
Issue Date: 23-Jan-2014
Source: Zhang, J.L., Xu, J.L., Niu, T.C., Lu, Y.H., Liu, L., Chen, W. (2014-01-23). Reversible switching of a single-dipole molecule imbedded in two-dimensional hydrogen-bonded binary molecular networks. Journal of Physical Chemistry C 118 (3) : 1712-1718. ScholarBank@NUS Repository. https://doi.org/10.1021/jp408890k
Abstract: Understanding the single-molecule switching mechanism in densely packed, rationally designed, and highly organized nanostructures is crucial for practical applications such as high-density data storage devices. In this article, we report an in situ low-temperature scanning tunneling microscopy (LT-STM) investigation of reversible switching of a single-dipole molecule (chloroaluminium phthalocyanine, ClAlPc) imbedded in two-dimensional (2D) hydrogen-bonded binary molecular networks on graphite. The single-molecule switching is highly localized and reversible and leaves the neighboring molecular network unaffected. The switching direction can be controlled by the polarity of the voltage pulse applied to the STM tip. On the basis of experimental results and theoretical calculations, the reversible switching is proposed to be caused by the "shuttling" of the Cl atom between two sides of the ClAlPc molecular plane. © 2014 American Chemical Society.
Source Title: Journal of Physical Chemistry C
URI: http://scholarbank.nus.edu.sg/handle/10635/94722
ISSN: 19327447
DOI: 10.1021/jp408890k
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Apr 10, 2018

WEB OF SCIENCETM
Citations

15
checked on Apr 10, 2018

Page view(s)

24
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.