Please use this identifier to cite or link to this item: https://doi.org/10.1021/jp108517k
Title: Hydrogen adsorption on mixed platinum and nickel nanoclusters: The influence of cluster composition and graphene support
Authors: Wu, J.
Ong, S.W. 
Kang, H.C. 
Tok, E.S. 
Issue Date: 16-Dec-2010
Source: Wu, J., Ong, S.W., Kang, H.C., Tok, E.S. (2010-12-16). Hydrogen adsorption on mixed platinum and nickel nanoclusters: The influence of cluster composition and graphene support. Journal of Physical Chemistry C 114 (49) : 21252-21261. ScholarBank@NUS Repository. https://doi.org/10.1021/jp108517k
Abstract: The physical and chemical properties of transition metal nanoclusters have been extensively investigated. In particular, we study the energetics of the mixed clusters Pt4-nNin, focusing on the binding energy of the clusters Ebind to a graphene support, and the hydrogenation energy Eads in both the gas-phase and the graphene-supported clusters. For each cluster composition, the cluster can bind to graphene in either a face-on or an edge-on configuration, and in each of these orientations, binding can occur through different atoms; we explore these binding configurations comprehensively. We discuss the variation of Ebind and Eads with respect to the composition of the cluster and the binding configuration of the cluster to the graphene support. Our results show that hydrogen is generally chemisorbed at a Pt site and physisorbed at a Ni site, with a dependence of the adsorption energy upon the composition and the adsorption configuration. Compared with the gas-phase cluster, the chemisorption energies are generally reduced, whereas the physisorption energies are generally increased when the cluster is supported on graphene. We show that the reduction in chemisorption energies can be understood in terms of the reduction in the intracluster bond strength and the binding energy to graphene, whereas the increase in physisorption energies can be understood in terms of an increase in the charge transferred to the adsorbed hydrogen. We also show that the binding energy to graphene depends upon composition, both through the elemental identity of the atoms binding to graphene and also through the strength of the intracluster bonding. In general, Ebind is reduced upon hydrogen adsorption on the cluster. In some cases, this changes the relative binding energies of different binding configurations, thus leading to a change in the most stable cluster orientation when hydrogen adsorption occurs. Our results show that Eads varies through a significant range with cluster composition and that this variation can be effectively understood through a consideration of the changes in localized charges on the hydrogen, the cluster atoms, and the graphene upon hydrogen adsorption. This dependence should be of broader relevance to other mixed transition metal clusters. © 2010 American Chemical Society.
Source Title: Journal of Physical Chemistry C
URI: http://scholarbank.nus.edu.sg/handle/10635/93977
ISSN: 19327447
DOI: 10.1021/jp108517k
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

24
checked on Feb 26, 2018

WEB OF SCIENCETM
Citations

22
checked on Feb 26, 2018

Page view(s)

31
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.