Please use this identifier to cite or link to this item: https://doi.org/10.1366/00037020260377715
Title: Use of entropy minimization for the preconditioning of large spectroscopic data arrays: Application to in situ FT-IR studies from the unmodified homogeneous rhodium catalyzed hydroformylation reaction
Authors: Chen, L.
Garland, M. 
Issue Date: Nov-2002
Citation: Chen, L., Garland, M. (2002-11). Use of entropy minimization for the preconditioning of large spectroscopic data arrays: Application to in situ FT-IR studies from the unmodified homogeneous rhodium catalyzed hydroformylation reaction. Applied Spectroscopy 56 (11) : 1422-1428. ScholarBank@NUS Repository. https://doi.org/10.1366/00037020260377715
Abstract: In situ spectroscopic measurements are fairly common in homogeneous catalysis. However, although it is easy to accumulate vast amounts of data, their appropriate analysis becomes a critical issue. Accordingly, we have developed a simple-to-implement but numerically sophisticated tool. Let A denote a matrix of absorbance data, n denote the number of preliminary spectra obtained from the stepwise addition of reagents, k denote the number of sequential reaction spectra, and v the spectroscopic channels. Then the preconditioning problem can be stated as A(n+k) x v exp → Ak x v pre. A single experiment results in (1) a set of n "pure" component reference spectra and (2) a set of k preconditioned reaction spectra where the reagents have been optimally subtracted. Entropy minimization is examined as a means of achieving both objectives. The developed algorithm was applied to a set of FT-IR spectra obtained from a complex transition-metal homogeneous catalyzed organic synthesis. Excellent reference spectra and excellent preconditioned reaction spectra were readily obtained. In addition, the absorbance of the products in the preconditioned spectra was compared to the absorbance obtained after manual user-defined subtraction. Comparable results were obtained. The present approach is clearly useful for the automated numerical treatment of very large sequential spectroscopic data arrays arising from in situ kinetic studies. Extension to related types of problems in the chemical sciences and to other spectroscopic methods such as NMR are obvious.
Source Title: Applied Spectroscopy
URI: http://scholarbank.nus.edu.sg/handle/10635/92463
ISSN: 00037028
DOI: 10.1366/00037020260377715
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

21
checked on May 19, 2018

WEB OF SCIENCETM
Citations

20
checked on Apr 2, 2018

Page view(s)

44
checked on May 11, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.