Please use this identifier to cite or link to this item:;2-H
Title: Physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes
Authors: Lin, W.-H.
Chung, T.-S. 
Issue Date: 1-Mar-2000
Source: Lin, W.-H.,Chung, T.-S. (2000-03-01). Physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes. Journal of Polymer Science, Part B: Polymer Physics 38 (5) : 765-775. ScholarBank@NUS Repository.;2-H
Abstract: The aging phenomenon of asymmetric 6FDA-durene polyimide hollow fibers spun with different shear rates for gas separation has been investigated. The permeances and selectivities of different gases, such as H2, O2, N2, CH4, and CO2, were experimentally determined as a function of time for around five months at room temperature. It was found that the gas permeation fluxes of the uncoated and silicone rubber-coated hollow fibers decreased significantly during the first 30 days following fabrication and then slightly deteriorated thereafter. In the early stage of aging, because of different molecular orientations and skin morphologies induced by shear rates, the percentage of permeance drop for uncoated fibers increased with increasing shear rates, then decreased with increasing shear rates. The permeance of 6FDA-durene hollow fibers coated with silicone rubber dropped more significantly than the uncoated fibers, implying that silicone rubber coating did affect the aging behavior. This might be due to the fact that silicone rubber layer hindered the molecular relaxation and tightened interface molecules between the dense selective layer and silicone rubber, thus the selectivity increased with aging. Thermal analysis data suggest two processes occurring simultaneously during the aging: one is the relaxation of shear oriented chains, and the other is the densification of chain packing through the reduction of interstitial space among chains. The former has been confirmed by an increase in CTE, while the latter was confirmed by an increase in the peak of β-relaxation temperature.
Source Title: Journal of Polymer Science, Part B: Polymer Physics
ISSN: 08876266
DOI: 10.1002/(SICI)1099-0488(20000301)38:53.0.CO;2-H
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Feb 24, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.