Please use this identifier to cite or link to this item: https://doi.org/10.1021/es401964s
Title: Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures
Authors: Zhang, Y.
Snow, D.D.
Parker, D.
Zhou, Z. 
Li, X.
Issue Date: 17-Sep-2013
Citation: Zhang, Y., Snow, D.D., Parker, D., Zhou, Z., Li, X. (2013-09-17). Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environmental Science and Technology 47 (18) : 10206-10213. ScholarBank@NUS Repository. https://doi.org/10.1021/es401964s
Abstract: The sludge compartment in livestock waste management structures is a potential hotbed for the emergence and proliferation of antimicrobial resistance among bacteria. Little is known about the distribution of antimicrobial resistance genes (ARGs) between the intracellular and extracellular DNA pools in the sludge. The overall objective of this study was to assess the significance of extracellular ARGs to the total ARGs in the sludge of livestock waste management structures. In this study, sludge samples were collected from four cattle manure storage ponds and three swine waste treatment lagoons and analyzed for genetic indicators of resistance. Intracellular DNA (iDNA) and extracellular DNA (eDNA) in the sludge were separately extracted using an optimized protocol. ARGs [sul(I), sul(II), tet(O), tet(Q), and tet(X)] in both the iDNA and eDNA extracts were quantified using quantitative polymerase chain reaction (qPCR), and antimicrobials, including sulfonamides and tetracyclines, were measured using liquid chromatography tandem mass spectrometry. Results showed that eDNA constituted less than 1.5% of the total DNA in sludge. All ARGs tested were detected in nearly all eDNA and iDNA samples. Furthermore, every gram of dry sludge contained from 1.7 × 103 to 4.2 × 108 copies of extracellular ARG and from 3.2 × 107 to 3.2 × 1010 copies of intracellular ARG. Chlortetracycline concentrations ranged between 187 and 2674 μg/g of sludge wet weight (ww), while sulfonamide concentrations were lower than 6.3 μg/g of sludge ww. The detection of ARGs in eDNA extracts suggests that transformation is a potential mechanism in ARG proliferation in the sludge of livestock waste management structures. © 2013 American Chemical Society.
Source Title: Environmental Science and Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/91038
ISSN: 0013936X
DOI: 10.1021/es401964s
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.