Please use this identifier to cite or link to this item: https://doi.org/10.1002/fld.3883
Title: Enhancing water level prediction through model residual correction based on Chaos theory and Kriging
Authors: Wang, X.
Babovic, V. 
Keywords: Data assimilation
Local model
Model residual correction
Ordinary kriging
Spatial distribution
Issue Date: 10-May-2014
Citation: Wang, X., Babovic, V. (2014-05-10). Enhancing water level prediction through model residual correction based on Chaos theory and Kriging. International Journal for Numerical Methods in Fluids 75 (1) : 42-62. ScholarBank@NUS Repository. https://doi.org/10.1002/fld.3883
Abstract: SUMMARY: Hydrodynamic models based on the physical processes are indispensable tools for predicting water levels in ocean environment. Nonetheless, their accuracies are limited by various factors such as simplifying assumptions, complex ocean bathymetry, and so on. Residual correction, as one of the data assimilation techniques, can extract information from observation and assimilate it into a numerical model to correct the model output directly. Such correction is often performed in two steps: prediction of the model residuals at measured stations followed by spatial distribution at non-measured locations. For long-term residual forecast, the accuracy of prediction usually deteriorates with the forecast horizon. In addition to the residual correction at measurement locations, in this paper, we address the critical question as to how to effectively update outputs for computational points without measurements. We develop a hybrid data assimilation procedure, which combines a modified local model (MLM) and an approximated ordinary kriging (AOK). This technique improves the forecasts over a long horizon over the entire computational domain. Using the proposed residual correction technique, the hybrid procedure is examined on a case study of Singapore Regional Model for correcting the water level outputs at locations with and without measurements. In order to provide a comparison, the analysis is carried out throughout prediction horizon of model residuals, tidal residuals, and sea level anomaly, respectively. The comparisons show that the proposed method can successfully assimilate and forecast all variables. Results indicate that resulting prediction accuracy can be significantly improved for all locations of interest independently of the forecast horizon. © 2014 John Wiley & Sons, Ltd.
Source Title: International Journal for Numerical Methods in Fluids
URI: http://scholarbank.nus.edu.sg/handle/10635/90958
ISSN: 10970363
DOI: 10.1002/fld.3883
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

7
checked on Oct 16, 2018

WEB OF SCIENCETM
Citations

7
checked on Oct 16, 2018

Page view(s)

32
checked on Aug 17, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.