Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.mseb.2005.08.100
DC FieldValue
dc.titleIon-implant simulations: The effect of defect spatial correlation on damage accumulation
dc.contributor.authorMok, K.R.C.
dc.contributor.authorJaraiz, M.
dc.contributor.authorMartin-Bragado, I.
dc.contributor.authorRubio, J.E.
dc.contributor.authorCastrillo, P.
dc.contributor.authorPinacho, R.
dc.contributor.authorSrinivasan, M.P.
dc.contributor.authorBenistant, F.
dc.date.accessioned2014-10-09T07:07:03Z
dc.date.available2014-10-09T07:07:03Z
dc.date.issued2005-12-05
dc.identifier.citationMok, K.R.C., Jaraiz, M., Martin-Bragado, I., Rubio, J.E., Castrillo, P., Pinacho, R., Srinivasan, M.P., Benistant, F. (2005-12-05). Ion-implant simulations: The effect of defect spatial correlation on damage accumulation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 124-125 (SUPPL.) : 386-388. ScholarBank@NUS Repository. https://doi.org/10.1016/j.mseb.2005.08.100
dc.identifier.issn09215107
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/90600
dc.description.abstractA predictive damage accumulation model, which takes into account different interdependent implant parameters, has been developed. The model assumes that the recrystallization rate of damage structures known as amorphous pockets (AP) is a function of its effective size, regardless of their spatial configuration. In the model, APs are three-dimensional agglomerates of interstitials (I) and vacancies (V), whose initial coordinates are generated by a binary collision approximation (BCA) code. This work addresses the importance of the spatial correlation of I's and V's in modeling damage accumulation and amorphization, by comparing simulations, whereby the initial coordinates of I and V are generated by BCA or randomly generated from the concentration distribution of an input damage profile. Low temperature implantations were simulated to avoid dynamic annealing in order to compare the initial damage morphology. For the same damage level, simulations by BCA resulted in ion mass dependent APs' sizes, with lighter implant ions generating smaller APs' sizes, implying more dilute damage compared with heavier ions. However, the ion mass dependent APs' size effect was lost by loading the same damage profile and randomly positioning the I's and V's. Consequently, the damage morphology, as well as the annealing behaviour obtained by reading I, V damage profiles is substantially different from those obtained using the much more realistic cascades generated by BCA. © 2005 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.mseb.2005.08.100
dc.sourceScopus
dc.subjectCrystal-amorphous
dc.subjectIon-implant simulation
dc.subjectSpatial correlation
dc.typeConference Paper
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/j.mseb.2005.08.100
dc.description.sourcetitleMaterials Science and Engineering B: Solid-State Materials for Advanced Technology
dc.description.volume124-125
dc.description.issueSUPPL.
dc.description.page386-388
dc.description.codenMSBTE
dc.identifier.isiut000233895800079
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.