Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2013.09.006
Title: Thickness dependent thermal rearrangement of an ortho-functional polyimide
Authors: Wang, H. 
Chung, T.-S. 
Paul, D.R.
Keywords: Diffusional resistance
Polymer segmental mobility
Thermal rearrangement
Thickness dependence
Issue Date: 15-Jan-2014
Citation: Wang, H., Chung, T.-S., Paul, D.R. (2014-01-15). Thickness dependent thermal rearrangement of an ortho-functional polyimide. Journal of Membrane Science 450 : 308-312. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2013.09.006
Abstract: The effect of film thickness on the thermal rearrangement of an ortho-functional polyimide, derived from 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB), to a polybenzoxazole structure was explored over the range from 50. nm to 100. μm. The rate of thermal rearrangement of this ortho-functional polyimide was found to be strongly dependent on film thickness. A thin film of 56. nm experienced a much more rapid and extensive thermal rearrangement process than a thick film of 100. μm as tracked by thermogravimetric analysis, TGA. The conversion of the ortho-functional polyimide to polybenzoxazole commences at a lower temperature for thinner films than for thicker films. Isothermal TGA experiments at 370. °C showed a much larger weight loss, or extent of rearrangement, at a given time for thin films compared to thick films. These observations are believed to reflect greater chain segmental mobility in the thin films, due to the proximity of the free surfaces, and perhaps the reduced diffusional resistance for removal of the evolving volatile compounds accompanying the rearrangement reaction.© 2013 Elsevier B.V.
Source Title: Journal of Membrane Science
URI: http://scholarbank.nus.edu.sg/handle/10635/90391
ISSN: 03767388
DOI: 10.1016/j.memsci.2013.09.006
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

15
checked on Jul 16, 2018

WEB OF SCIENCETM
Citations

12
checked on Jun 20, 2018

Page view(s)

31
checked on May 4, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.