Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/89826
Title: Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture
Authors: Guan, H.-M.
Chung, T.-S. 
Huang, Z.
Chng, M.L. 
Kulprathipanja, S.
Keywords: Cross-linked PVA
Ethanol-water separation
Fumaric acid
KA zeolite
Multilayer mixed matrix membrane
Pervaporation
PVA multilayer composite membrane
Issue Date: 15-Jan-2006
Citation: Guan, H.-M., Chung, T.-S., Huang, Z., Chng, M.L., Kulprathipanja, S. (2006-01-15). Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture. Journal of Membrane Science 268 (2) : 113-122. ScholarBank@NUS Repository.
Abstract: We have developed multilayer mixed matrix membranes (MMMMs) consisting of a selective mixed matrix membrane (MMM) top layer, a porous poly(acrylonitrile- co-methyl acrylate) [poly(AN-co-MA)] intermediate layer and a polyphenylene sulfide (PPS) nonwoven fabrics substrate. The selective MMM layer was formed by incorporating KA zeolite in poly(vinyl alcohol) (PVA) matrix followed by the cross-linking reaction of PVA with fumaric acid. The fumaric acid induced cross-linking reactions were confirmed by Fourier-transformation infrared (FTIR), and their effects on PVA thermal stability and glass transition temperature were characterized by thermolgravimetric analysis (TGA) and differential scanning calorimetry (DSC). The separation performance of the newly developed MMMMs was investigated in terms of permeance and selectivity (as well as flux and separation factor) with respect to zeolite content, feed temperature and composition for the ethanol-water separation by pervaporation. It is found that the separation performance of the MMMM is superior to that of multilayer homogenous membranes (MHM) containing no zeolite. For example, the MMMM with 20 wt.% KA zeolite loading exhibits a much higher selectivity than that of MHM (1279 versus 511) at 60°C if the feed is a mixture of 80/20 (wt.%) ethanol/water. In addition, the activation energy of the water permeation is significantly reduced from 16.22 to 10.12 kJ/mol after adding of KA zeolite into the PVA matrix, indicating that water molecules require a much less energy to transport through the MMMM because the presence of hydrophilic channels in the framework of zeolite. The excellent pervaporation performance of the MMMM is also resulted from the good contact between zeolite-incorporated and polymer matrix cross-linked by fumaric acid. © 2005 Elsevier B.V. All rights reserved.
Source Title: Journal of Membrane Science
URI: http://scholarbank.nus.edu.sg/handle/10635/89826
ISSN: 03767388
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

103
checked on Mar 13, 2018

WEB OF SCIENCETM
Citations

92
checked on May 8, 2018

Page view(s)

42
checked on May 18, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.