Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ces.2008.08.021
DC FieldValue
dc.titlePercutaneous absorption of volatile solvents following transient liquid exposures: I. Model development
dc.contributor.authorRay Chaudhuri, S.
dc.contributor.authorKasting, G.B.
dc.contributor.authorKrantz, W.B.
dc.date.accessioned2014-10-09T06:57:15Z
dc.date.available2014-10-09T06:57:15Z
dc.date.issued2009-03
dc.identifier.citationRay Chaudhuri, S., Kasting, G.B., Krantz, W.B. (2009-03). Percutaneous absorption of volatile solvents following transient liquid exposures: I. Model development. Chemical Engineering Science 64 (5) : 1027-1035. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ces.2008.08.021
dc.identifier.issn00092509
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/89740
dc.description.abstractA one-dimensional mass-transport model describing the disposition of a volatile liquid applied topically to human skin in vitro is described. The physical model consists of three layers-the vehicle (VH), stratum corneum (SC) and viable tissues (VT). Each layer is considered to be homogeneous except for the uppermost portion of the SC, which is considered to be peeling off in scales or desquamating and is subject to almost instantaneous capillary sorption during the initial application of liquid. This behavior is captured by a parameter defined as the fractional deposition depth fdep. Its influence is shown here by means of parametric simulation studies. The diffusion/evaporation model is described and analyzed from a scaling approach, and solved for the case of a permeant having the properties of ethanol, a common solvent for the deposition of solutes on skin, using a finite difference/finite element code that allows for the moving boundary problem associated with the VH. The advantages relative to prior computational models for percutaneous absorption are that this improved model can readily be extended to describe the skin disposition of solutes from binary or multi-component mixtures or to describe combined heat and mass transfer in skin, two problems that have not been quantitatively addressed heretofore. © 2008.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.ces.2008.08.021
dc.sourceScopus
dc.subjectMass transfer
dc.subjectMathematical modeling
dc.subjectPercutaneous absorption
dc.subjectScaling analysis
dc.subjectSkin
dc.subjectTransdermal transport
dc.subjectTransient exposure
dc.subjectVolatile liquids
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/j.ces.2008.08.021
dc.description.sourcetitleChemical Engineering Science
dc.description.volume64
dc.description.issue5
dc.description.page1027-1035
dc.description.codenCESCA
dc.identifier.isiut000263774000022
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.